KALASALINGAM UNIVERSITY (Kalasalingam Academy of Research and Education) ANAND NAGAR, KRISHNANKOIL – 626 126

DEPARTMENT OF MATHEMATICS COURSE PLAN

Name of the Staff Members	ame of the Staff Members : All faculties of Mathematics Department				
Subject with code	: Mathematics I (MAT103)				
Course	: B. Tech.,				
Semester / Branch	: I / All branches				

PRE-REQUISITE:

Basic concepts of matrix theory, differentiation, integration, two and three dimensional analytical geometry and differential equations.

OBJECTIVES:

- 1. To familiarize the students with the concept and techniques of differentiation and integration and their applications to engineering problems.
- 2. To study the Eigen value problems, Differential equations.
- 3. To grasp the concepts in analytical geometry.

COURSE LEARNING OUTCOMES AND END USE

- 1. To find the methods of solving differential equation which are very much useful to the students in their respective branches of Engineering.
- 2. To use three dimensional geometry and eigen value problems in many engineering problems.

TEXT BOOKS:

- T1. Kreyszig, E, Advanced Engineering Mathematics, John Willey and Sons (Asia) Limited, Singapore, 8th Edition, 2001.
- T2. Arumugam, S., Thangapandi Issac, A., Somasundaram, A., Engineering Mathematics Volume I, Scitech Publications (India) Pvt Ltd., Chennai, 2nd Edition, Reprint 2009.

REFERENCES:

- Grewal, B.S., Grewal, J.S., Higher Engineering Mathematics, Khanna Publishers, New Delhi, 37th Edition, 5th Reprint 2004.
- 2. Venkatraman, M.K, Engineering Mathematics first year, The National publishing company, Chennai, 2nd Edition, Reprint.

LESSON PLAN:

S. No.	Topic Name	Text Book	No. of periods	Cum. No. of periods
	UNIT I: MATRICES			
1	Characteristic Equation – Eigen values and eigen vectors of a real matrix – Properties of eigen values and eigen vectors.	T2 (Sec 2.3-2.4)	2	2
2	Cayley – Hamilton Theorem and Problems.	T2 (Sec 2.3-2.4)	2	4

3	Orthogonal transformation of a real symmetric	T2(Sec 2.5)	2	6
	matrix to diagonal form.			
4	Quadratic Form – Reduction of Quadratic Form to	T2(Sec 2.7)	3	9
	Canonical Form by orthogonal transformation –			
	Index, Signature and Nature of Quadratic Forms.			
	UNIT II: APPLICATIONS OF			
	DIFFERENTIAL CALCULUS			
5	Curvature and Radius of curvature: Cartesian and	T2(Sec 4.14)	2	11
	Polar forms.			
6	Center and Circle of curvature.	T2(Sec 4.15)	1	12
7	Evolutes.	T2(Sec 4.15)	3	15
8	Envelopes – Evolute as envelopes of normals.	T2(Sec 4.16)	3	18
	UNIT III: FUNCTIONS OF SEVERAL			
0	VARIABLES	$T_{0}(0, 4, 10, 0)$	2	20
9	Partial derivatives – Total derivatives – Higher	T2(Sec 4.10 &	2	20
10	order partial derivatives and Problems.	4.13)	2	22
10	Euler's theorem for homogenous functions –	T2(Sec 4.11 & 5.2	2	22
11	Taylor's expansion. Jacobians.		1	23
	Maxima and Minima for functions of two	T2(Sec 4.12)	1	
12	variables.	T2(Sec 5.3)	2	25
13	Constrained maxima and minima by	T2(Sec 5.4)	2	27
	Lagrangian multiplier method.			
	UNIT IV : ORDINARY DIFFERENTIAL			
	EQUATIONS (ODE)			
14	Solutions of second and higher order linear ODE	T2(Sec 7.9)	3	30
	with constant coefficients.			
15	Cauchy's and Legendre's linear equations.	T2(Sec 7.10)	2	32
16	Simultaneous first order linear equations with	T2(Sec 7.11)	2	34
	constant coefficients.			
17	Method of Variation of parameters.	T2(Sec 7.12)	2	36
	UNIT V: THREE DIMENSIONAL			
	ANALYTICAL GEOMETRY			
18	Direction cosines and ratios.	T2(Sec 3.1-3.3)	1	37
19	Angle between two lines and equation of a plane.	T2(Sec 3.3-3.4)	2	39
20	Equation of a straight line and coplanar lines,	T2(Sec 3.5-3.6)	3	42
	shortest distance between two skew lines.			
21	Sphere – Tangent plane – Plane section of a sphere	T2(Sec 3.7)	3	45
	– Orthogonal spheres.			

Prepared by

Verified by

(Staff in charge)

(HOD - Maths)