Dr. K. Karuppasamy

www.drkk.in

Yahoo Answers 21-12-2014

Problem : On a construction site gravel is delivered and poured into a conical pile. The diameter and height of the cone of gravel are changing in a way that the diameter is always three times the height. If the delivery truck is set for the gravel at a constant rate of $3 \mathrm{ft} .^{3}$ permit how fast is the radius of the Pio changing when the height is 4 feet?

Solution: Let r be the radius, be height and V be the volume of the cone of gravel at time t sec.

It is given that, diameter $=3^{*}$ height and $\mathrm{dV} / \mathrm{dt}=3 \mathrm{ft}^{3} / \mathrm{sec}$.

$$
\begin{equation*}
\Rightarrow 2 r=3 h \text { and } \frac{d r}{d t}=\frac{3}{2} \frac{d h}{d t} \tag{1}
\end{equation*}
$$

\qquad

We have at any time $\mathrm{t}, \quad V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi\left(\frac{3 h}{2}\right)^{2} h=\frac{3}{4} \pi h^{3}$
$\Rightarrow \frac{d V}{d t}=\frac{9}{4} \pi h^{2} \frac{d h}{d t}$

$$
\Rightarrow \frac{d h}{d t}=\frac{4}{9 \pi h^{2}} \frac{d V}{d t}
$$

When $\mathrm{h}=4, \frac{d h}{d t}=\frac{4}{9 \pi 4^{2}} * 3=\frac{1}{12 \pi}$

When $\mathrm{h}=4$, (1) becomes, $\frac{d r}{d t}=\frac{3}{2} * \frac{1}{12 \pi}=\frac{1}{8 \pi}$

Hence radius of the Pio is changing at the rate of $\frac{1}{8 \pi} \mathrm{ft} / \mathrm{sec}$.

