Format No: KLU/PM/C-V/PRN/7.5.1/24/F-01

KALASALINGAM UNIVERSITY ANAND NAGAR, KRISHNANKOIL – 626 126

COURSE PLAN

Subject/Code	:	Mathematics – II/MAT104
Semester/Branch	:	Second/ALL Branches
Name of the Staff	:	Faculties of Mathematics

PRE-REQUISITE:

Basic differential and integral concepts, vectors and complex variable.

OBJECTIVES:

- 1. To familiarize the students with the concept and techniques of the calculus of several variables and vector calculus and their applications to engineering problems.
- 2. To study the multiple integrals, vector calculus.
- 3. To grasp the basics of complex integration and the concepts of contour integration which is an important tool for evaluation of certain integrals encountered in practice.
- 4. To apply the ordinary differential equations in various engineering concepts.

COURSE LEARNING OUTCOMES AND END USE

- 1. Find the derivatives and integrals of vector-valued functions and use them to describe motion in space via the vector components of velocity and acceleration
- 2. Graphically illustrate what a line integral represents and evaluate these line integrals using appropriate techniques such as parameterization, Fundamental Theorem of Line Integrals and Green's Theorem.

TEXT BOOKS:

- 1. Kreyszig, E, Advanced Engineering Mathematics, John Wiley and Sons (Asia) Limited, Singapore, 8th Edition, 2001.
- Arumugam, S., Thangapandi Isaac, A., Somasundaram, A., Mathematics for Engineers, Scitech Publications (India) Pvt. Ltd., Chennai, 1st Edition., Reprint 2011.

REFERENCE BOOKS:

- 1. Grewal, B.S., Grewal, J.S., Higher Engineering Mathematics, Khanna Publishers, New Delhi, 37th Edition, 5th Reprint 2004.
- 2. Venkataraman, M. K., Engineering Mathematics First Year, the National Publishing Company, Chennai, 2nd Edition, Reprint 2001.
- 3. Venkataraman, M. K., Engineering Mathematics –IIIA, he National Publishing Company, Chennai, 11th Edition, Reprint 2002.

Web resources:

- 1) www.maths.leeds.ac.uk/~wilsonh/MATH2420/Ch0-2.pdf
- 2) www.esam.northwestern.edu/~silber/ 215/syllabus-215.html
- 3) oregonstate.edu/dept/math/CalculusQuestStudyGuides/ vcalc/vcalc.html

S. No.	Торіс	No. of periods	Cumulative Hours
	MULTIPLE INTEGRALS		
1	Review of Integration – Double integration	1	1
2	Cartesian and polar coordinates	1	2
3	Change of order of integration	2	4
4	Change of variable between Cartesian and polar coordinates - Area	2	6

	as a double integral		
5	Triple integration in Cartesian coordinates	1	7
6	6 Cylindrical and spherical polar coordinates – volume as triple		9
	integral		
	VECTOR CALCULUS		
7	Gradient, divergence and curl	1	10
8	Directional Derivative – Irrotational and Solenoidal vector field	1	11
9	Vector integration	1	12
10	Statement of Green's Theorem, verification and applications	2	14
11	Statement of Gauss divergence Theorem, verification and	2	16
	applications		
12	Statement of Stokes Theorem, verification and applications	2	18
	ANALYTIC FUNCTIONS AND CONFORMAL MAPPINGS		
13	Functions of a complex variable	1	19
14	Analytic functions, Necessary condition: Cauchy – Riemann	1	20
	equations in Cartesian coordinates (Proof not included)		
15	Sufficient condition (Proof not included) – Properties of analytic	1	21
	functions		
16	Harmonic conjugate – Construction of analytic functions.	2	23
17	Conformal mappings: $w=a+z$, az , $1/z$, e^z , $\sin z$, $\cos z$	2	25
18	Bilinear transformation – Fixed Points – Cross ratio	2	27
	COMPLEX INTEGRATION		
19	Statements and Applications of Cauchy's integral theorem and	2	29
	integral formula		
20	Taylor and Laurent's Expansions	2	31
21	Singularities – Residues	1	32
22	Cauchy's residue theorem	2	34
23	Contour integration over unit circle and semi - circular contours	2	36
	(excluding poles on the real axis) – Evaluation of real integrals		
	using contour integration		
	APPLICATIONS OF ORDINARY DIFFERENTIAL		
	EQUATIONS		
24	Differential Equations related to Electric circuits	3	39
25	Bending of Beams	2	41
26	Motion of a particle in a resisting medium	2	43
27	Simple Harmonic Motion	2	45

SESSIONAL EXAM	TOPIC NO
1	1 – 12
2	13 - 20
3	21 - 27

Course Coordinator