MAT211 - Numerical Methods : Important Formulae

1 Solution of Equations and Eigen value Problems

- 1. Intermediate Theorem: Let f(x) be a continuous function on [a, b]. If $d \in [f(a), f(b)]$ then there exists a $c \in [a, b]$ such that f(c) = d.
- 2. $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n = 0$, where a_i 's are constants, is called an Algebraic equation or a Polynomial equation of n^{th} degree, if $a_0 \neq 0$. A non-algebraic equation is called a Transcendental equation.
- 3. If f(x) = 0 is continuous in $a \le x \le b$ and if f(a) and f(b) are of opposite signs, the $f(\xi) = 0$ for at least one number ξ such that $a < \xi < b$.
- 4. Every algebraic equation of odd degree has at least one real root whose sign is opposite to that of its last term.
- 5. Every algebraic equation of even degree with last term negative, has at least a pair of real roots one is positive and the other negative.
- 6. Iterative Method : To find a real root of f(x) = 0 by iterative method, rewrite the given equation in the form of $x = \phi(x)$ where $|\phi'(x)| < 1$ in (a, b). (Note: f(a) and f(b) are of opposite signs).
- 7. **Regula-Falsi Method:** To find a real root of f(x) = 0, find two real numbers a and b such that f(a) and f(b) are of opposite signs. The first approximate root is given by $x_1 = \frac{af(b) bf(a)}{f(b) f(a)}$.
- 8. Newton-Raphson Method(single variable): To find a real root of f(x) = 0 by Newton-Raphson method, the first approximate root is given by $x_1 = x_0 \frac{f(x_0)}{f'(x_0)}$ where x_0 is an initial approximate root of f(x) = 0. In general $x_{k+1} = x_k \frac{f(x_k)}{f'(x_k)}$. (Note: Choose $x_0 = \frac{a+b}{2}$ if f(a) and f(b) are of opposite signs).
- 9. The order of convergence of Newton-Raphson method is two.
- 10. The condition for convergence of Newton-Raphson method is $|f(x)f''(x)| < |f'(x)|^2$.
- 11. Newton-Raphson Method(Two variables):Consider the system of equations f(x, y) = 0and g(x, y) = 0 with the initial approximation being (x_0, y_0) . The first approximate root is given by $x_1 = x_0 + h, y_1 = y_0 + k$ where $h = -\frac{D_1}{D}, k = -\frac{D_2}{D},$ $D = \begin{vmatrix} f_x & f_y \\ g_x & g_y \end{vmatrix} _{(x_0, y_0)}, D_1 = \begin{vmatrix} f & f_y \\ g & g_y \end{vmatrix} _{(x_0, y_0)}, D_2 = \begin{vmatrix} f_x & f \\ g_x & g \end{vmatrix} _{(x_0, y_0)}$
- 12. Gauss Elimination Method: To solve the system of linear equations $a_1x + b_1y + c_1z = d_1, a_2x + b_2y + c_2z = d_2, a_3x + b_3y + c_3z = d_3$ by Gauss Elimination method, transform the augmented matrix $[A, B] = \begin{bmatrix} a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \end{bmatrix}$ into an upper triangular matrix by the

elementary row operations. Back substitution on the transformed equations will give the required solution.

13. **Gauss-Jordan Method:** To solve the system of linear equations $a_1x + b_1y + c_1z = d_1, a_2x + b_2y + c_2z = d_2, a_3x + b_3y + c_3z = d_3$ by *Gauss-Jordan method*, transform the augmented matrix $\begin{bmatrix} a_1 & b_1 & c_1 & d_1 \end{bmatrix}$

 $[A,B] = \begin{bmatrix} a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \end{bmatrix}$ into a diagonal matrix by the elementary row operations. The

transformed equations will give the required solution.

- 14. A square matrix is said to be *diagonally dominant* if the numerical value of the leading diagonal element in each row is greater than or equal to the sum of the numerical values of other elements in that row.
- 15. **Gauss-Jacobi Method:** To solve the system of linear equations $a_1x + b_1y + c_1z = d_1, a_2x + b_2y + c_2z = d_2, a_3x + b_3y + c_3z = d_3$ by *Gauss-Jordan method*. Assume that the coefficient matrix is diagonally dominant. Rewrite the given system of equations as $x = \frac{1}{a_1}(d_1 b_1y c_1z); y = \frac{1}{b_2}(d_2 a_2x c_2z); z = \frac{1}{c_3}(d_3 a_3x b_3y)$. If $x^{(0)}, y^{(0)}, z^{(0)}$ be the initial guess for x, y, z respectively, then the first approximate root is given by $x^{(1)} = \frac{1}{a_1}(d_1 b_1y^{(0)} c_1z^{(0)}); y^{(1)} = \frac{1}{b_2}(d_2 a_2x^{(0)} c_2z^{(0)}); z^{(1)} = \frac{1}{c_3}(d_3 a_3x^{(0)} b_3y^{(0)})$. Using these values, we get the second approximate root as $x^{(2)} = \frac{1}{a_1}(d_1 b_1y^{(1)} c_1z^{(1)}); y^{(2)} = \frac{1}{b_2}(d_2 a_2x^{(1)} c_2z^{(1)}); z^{(2)} = \frac{1}{c_3}(d_3 a_3x^{(1)} b_3y^{(1)})$. Repeating this process, we get the required solution.
- 16. **Gauss-Seidel Method:** To solve the system of linear equations $a_1x + b_1y + c_1z = d_1, a_2x + b_2y + c_2z = d_2, a_3x + b_3y + c_3z = d_3$ by *Gauss-Seidel method*. Assume that the coefficient matrix is diagonally dominant. Rewrite the given system of equations as $x = \frac{1}{a_1}(d_1 b_1y c_1z); y = \frac{1}{b_2}(d_2 a_2x c_2z); z = \frac{1}{c_3}(d_3 a_3x b_3y)$. If $y^{(0)}, z^{(0)}$ be the initial guess for y, z respectively, then the first approximate root is given by $x^{(1)} = \frac{1}{a_1}(d_1 b_1y^{(0)} c_1z^{(0)}); y^{(1)} = \frac{1}{b_2}(d_2 a_2x^{(1)} c_2z^{(0)}); z^{(1)} = \frac{1}{c_3}(d_3 a_3x^{(1)} b_3y^{(1)})$. Using these values, we get the second approximate root as $x^{(2)} = \frac{1}{a_1}(d_1 b_1y^{(1)} c_1z^{(1)}); y^{(2)} = \frac{1}{b_2}(d_2 a_2x^{(2)} c_2z^{(1)}); z^{(2)} = \frac{1}{c_3}(d_3 a_3x^{(2)} b_3y^{(2)})$. Repeating this process, we get the required solution.
- 17. **Power Method:** To find the numerically largest eigen value and the corresponding eigen vector of a square matrix A by Power method, choose the initial eigen vector as $X_0 = (1, 0, 0)'$. Then

 $AX_0 = \lambda_1 X_1 \text{ where } X_1 = (1, a_1, b_1)'$ $AX_1 = \lambda_2 X_2 \text{ where } X_2 = (1, a_2, b_2)'$ $AX_2 = \lambda_3 X_3 \text{ where } X_3 = (1, a_3, b_3)'$

The sequence $\lambda_1, \lambda_2, \lambda_3, \cdots$ converges to the numerically largest eigen value of A and the sequence X_1, X_2, X_3, \cdots converges to the corresponding eigen vector.

2 Interpolation

Interpolation with equal intervals

- 18. Finite Differences: Let y = f(x) be a given function of x and let $y_i = f(x_i)$ for $i = 0, 1, 2, \dots, n$ where $x_i = x_{i-1} + h$ for $i = 1, 2, \dots, n$, h is the interval of differencing. Now $y_1 y_0, y_2 y_1, \dots, y_n y_{n-1}$ are called the first differences of the function y. We denote $\Delta y_i = y_{i+1} y_i$, Δ is called the forward difference operator. Now the differences of these first differences are called second differences. Thus $\Delta^2 y_i = \Delta(\Delta y_i) = \Delta(y_{i+1} y_i) = \Delta y_{i+1} \Delta y_i = (y_{i+2} y_{i+1}) (y_{i+1} y_i) = y_{i+2} 2y_{i+1} + y_i$. In general, $\Delta^k y_i = \Delta^{k-1} y_{i+1} \Delta^{k-1} y_i$.
- 19. $\Delta f(x) = f(a+h) f(x)$.
- 20. Forward difference table

x	y	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$
x_0	y_0				
		Δy_0	. 9		
x_1	y_1	•	$\Delta^2 y_0$	• 3	
		Δy_1	۸2.	$\Delta^3 y_0$	$\Delta^4 y_0$
x_2	y_2	Aar	$\Delta^2 y_1$	$\Delta^3 y_1$	Δy_0
x_3	y_3	Δy_2	$\Delta^2 y_2$	Δg_1	
~3	93	Δy_3	- 92		
x_4	y_4	30			

- 21. Newton's Forward Interpolation Formula $y_n = y(x_0 + nh) = y_0 + n\Delta y_0 + \frac{n(n-1)}{2!}\Delta^2 y_0 + \frac{n(n-1)(n-2)}{3!}\Delta^3 y_0 + \cdots$ (This formula gives greater accuracy when $x_0 + nh$ is near the beginning of the table)
- 22. Backward Difference: The backward difference operator ∇ is defined as $\nabla y_i = y_i y_{i-1}$. The second backward difference is $\nabla^2 y_i = \nabla(\nabla y_i) = \nabla(y_i - y_{i-1}) = \nabla y_i - \nabla y_{i-1} = (y_i - y_{i-1}) - (y_{i-1} - y_{i-2}) = y_i - 2y_{i-1} + y_{i-2}$. In general $\nabla^k y_i = \nabla^{k-1} y_i - \nabla^{k-1} y_{i-1}$.
- 23. $\nabla f(x) = f(x) f(x h).$
- 24. Backward difference table

x	y	∇y	$\nabla^2 y$	$\nabla^3 y$	$\nabla^4 y$
x_{-4}	y_{-4}				
~		$ abla y_{-3}$ $ abla y_{-2}$	$\nabla^2 a$		
x_{-3}	y_{-3}	∇y_{-2}	$\nabla^2 y_{-2}$	$\nabla^3 y_{-1}$	
x_{-2}	y_{-2}		$\nabla^2 y_{-1}$		$\nabla^4 y_0$
		∇y_{-1}		$\nabla^3 y_0$	
x_{-1}	y_{-1}	_	$\nabla^2 y_0$		
		∇y_0			
x_0	y_0				

25. Newton's Backward Interpolation Formula $y_n = y(x_0 + nh) = y_0 + n\nabla y_0 + \frac{n(n+1)}{2!}\nabla^2 y_0 + \frac{n(n+1)(n+2)}{3!}\nabla^3 y_0 + \cdots$ (This formula gives greater accuracy when $x_0 + nh$ is near the end of the table)

- 26. Central difference: The central difference operator δ is defined as $\delta y_x = y_{x+\frac{h}{2}} y_{x-\frac{h}{2}}$.
- 27. $\delta y_x = \Delta y_{x-\frac{h}{2}}$ or $\Delta y_x = \delta y_{x+\frac{h}{2}}$.
- 28. Central difference table

x	y	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$
x_{-2}	y_{-2}				
x_{-1}	y_{-1}	Δy_{-2}	$\Delta^2 y_{-2}$		
N.	37.	$\Delta \mathrm{y}_{-1}$		$\Delta^3 y_{-2}$	A4.
x ₀	y 0	Δy_0	$\Delta^2 y_{-1}$	$\Delta^3 y_{-1}$	$\Delta^4 \mathrm{y}_{-2}$
x_1	y_1		$\Delta^2 y_0$		
x_2	y_2	Δy_1			

Updated on April 4, 2014 by Dr. K.Karuppasamy(www.drkk.in), Kalasalingam University

29. Stirling's Central difference formula

 $y(x_0 + nh) = y_0 + n\left(\frac{\Delta y_0 + \Delta y_{-1}}{2}\right) + \frac{n^2}{2!}\Delta^2 y_{-1} + \frac{n(n^2 - 1)}{3!}\left(\frac{\Delta^3 y_{-1} + \Delta^3 y_{-2}}{2}\right) + \frac{n^2(n^2 - 1)}{4!}\Delta^4 y_{-2} + \cdots$ Interpolation with unequal intervals

- 30. Divided Differences: Let y = f(x) be the given function. Let $f(x_0), f(x_1), \dots, f(x_n)$ be the values of the function corresponding to the arguments x_0, x_1, \dots, x_n and x_0, x_1, \dots, x_n need not be equally spaced. The first divided difference of f(x) for the arguments x_0 and x_1 is defined as $f[x_0, x_1] = \frac{f(x_1) f(x_0)}{x_1 x_0}$. Similarly, $f[x_1, x_2] = \frac{f(x_2) f(x_1)}{x_2 x_1}$. The second divided difference of f(x) for the arguments x_0, x_1 and x_2 is $f[x_0, x_1, x_2] = \frac{f[x_1, x_2] f[x_0, x_1]}{x_2 x_0}$.
- 31. Divided difference table

		First	Second	Third	Fourth		
x	f(x)	divided	divided	divided	divided		
		difference	difference	difference	difference		
x_0	$f(x_0)$						
		$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$					
x_1	$f(x_1)$	w1 w0	$f[x_0, x_1, x_2]^*$				
		$f[x_1, x_2] = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$		$f[x_0, x_1, x_2, x_3]^*$			
x_2	$f(x_2)$		$f[x_1, x_2, x_3]^*$		$f[x_0, x_1, x_2, x_3, x_4]^*$		
		$f[x_2, x_3] = \frac{f(x_3) - f(x_2)}{x_3 - x_2}$		$f[x_1, x_2, x_3, x_4]^*$			
x_3	$f(x_3)$	13 x2	$f[x_2, x_3, x_4]^*$				
		$f[x_3, x_4] = \frac{f(x_4) - f(x_3)}{x_4 - x_4}$					
x_4	$f(x_4)$	$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$ $f[x_1, x_2] = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$ $f[x_2, x_3] = \frac{f(x_3) - f(x_2)}{x_3 - x_2}$ $f[x_3, x_4] = \frac{f(x_4) - f(x_3)}{x_4 - x_3}$					
$ \frac{f[x_0, x_1, x_2] - f[x_0, x_1]}{f[x_1, x_2] - f[x_0, x_1]} \cdot f[x_1, x_2, x_2] - \frac{f[x_2, x_3] - f[x_1, x_2]}{f[x_1, x_2]} \cdot f[x_2, x_3] - \frac{f[x_3, x_4] - f[x_2, x_3]}{f[x_1, x_2] - f[x_1, x_2]} \cdot f[x_1, x_2] - \frac{f[x_1, x_2] - f[x_1, x_2]}{f[x_1, x_2] - f[x_1, x_2]} \cdot f[x_1, x_2] + \frac{f[x_1, x_2] - f[x_1, x_2] - f[x_1, x_2]}{f[x_1, x_2] - f[x_1, x_2]} \cdot f[x_1, x_2] + \frac{f[x_1, x_2] - f[x_1, x_2] - f[x_1, x_2]}{f[x_1, x_2] - f[x_1, x_2]} \cdot f[x_1, x_2] + \frac{f[x_1, x_2] - f[x_1, x_2]}{f[x_1, x_2] - f[x_1, x_2]} \cdot f[x_1, x_2] + \frac{f[x_1, x_2] - f[x_1, x_2]}{f[x_1, x_2] - f[x_1, x_2]} \cdot f[x_1, x_2] + \frac{f[x_1, x_2] - f[x_1, x_2]}{f[x_1, x_2] - f[x_1, x_2]} \cdot f[x_1, x_2] \cdot f[x_1, x_2] + \frac{f[x_1, x_2] - f[x_1, x_2]}{f[x_1, x_2] - f[x_1, x_2]} \cdot f[x_1, x_2] \cdot f[x_1, x_2] + \frac{f[x_1, x_2] - f[x_1, x_2]}{f[x_1, x_2] - f[x_1, x_2]} \cdot f[x_1, x_2] \cdot f[x_1, x_2] - \frac{f[x_1, x_2] - f[x_1, x_2]}{f[x_1, x_2] - f[x_1, x_2]} \cdot f[x_1, x_2] \cdot f[x_1, x_2] - \frac{f[x_1, x_2] - f[x_1, x_2]}{f[x_1, x_2] - f[x_1, x_2]} \cdot f[x_1, x_2] - \frac{f[x_1, x_2] - f[x_1, x_2]}{f[x_1, x_2] - f[x_1, x_2]} \cdot f[x_1, x_2] - \frac{f[x_1, x_2] - f[x_1, x_2]}{f[x_1, x_2] - f[x_1, x_2]} \cdot f[x_1, x_2] - \frac{f[x_1, x_2] - f[x_1, x_2]}{f[x_1, x_2] - f[x_1, x_2]} \cdot f[x_1, x_2] - \frac{f[x_1, x_2] - f[x_1, x_2]}{f[x_1, x_2] - f[x_1, x_2]} \cdot f[x_1, x_2]} \cdot f[x_1, x_2] - \frac{f[x_1, x_2] - f[x_1, x_2]}{f[x_1, x_2] - f[x_1, x_2]} \cdot f[x_1, x_2]} \cdot f[x_1, x_2] \cdot f[x_1, x_2]} \cdot f[x_1, x_2] \cdot f[x_1,$							

$${}^{*}f[x_{0},x_{1},x_{2}] = \frac{f[x_{1},x_{2}]-f[x_{0},x_{1}]}{x_{2}-x_{0}}; f[x_{1},x_{2},x_{3}] = \frac{f[x_{2},x_{3}]-f[x_{1},x_{2}]}{x_{3}-x_{1}}; f[x_{2},x_{3},x_{4}] = \frac{f[x_{3},x_{4}]-f[x_{2},x_{3}]}{x_{4}-x_{2}}; f[x_{0},x_{1},x_{2},x_{3}] = \frac{f[x_{1},x_{2},x_{3}]-f[x_{0},x_{1},x_{2}]}{x_{3}-x_{0}}; f[x_{1},x_{2},x_{3},x_{4}] = \frac{f[x_{2},x_{3},x_{4}]-f[x_{1},x_{2},x_{3}]}{x_{4}-x_{1}}; f[x_{0},x_{1},x_{2},x_{3},x_{4}] = \frac{f[x_{1},x_{2},x_{3},x_{4}]-f[x_{0},x_{1},x_{2},x_{3}]}{x_{4}-x_{0}}.$$

32. Newton's Divided difference formula:

$$f(x) = f(x_0) + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2] + (x - x_0)(x - x_1)(x - x_2)f[x_0, x_1, x_2, x_3] + (x - x_0)(x - x_1)(x - x_2)(x - x_3)f[x_0, x_1, x_2, x_3, x_4] + \cdots$$

33. Lagranges Interpolation formula: Let y = f(x) be the given function. Let $f(x_0), f(x_1), \dots, f(x_n)$ be the values of the function corresponding to the arguments x_0, x_1, \dots, x_n and x_0, x_1, \dots, x_n need not be equally spaced. $f(x) = \frac{(x-x_1)(x-x_2)\cdots(x-x_n)}{(x_0-x_1)(x_0-x_2)\cdots(x_0-x_n)}f(x_0) + \frac{(x-x_0)(x-x_2)(x-x_3)\cdots(x-x_n)}{(x_1-x_2)(x_1-x_3)\cdots(x_1-x_n)}f(x_1) + \dots$ $+ \frac{(x-x_0)(x-x_1)\cdots(x-x_{n-1})}{(x_n-x_0)(x_n-x_1)\cdots(x_n-x_{n-1})}f(x_n)$ is called the Lagrange's interpolation formula.

3 Numerical Differentiation and Integration:

- 34. Numerical Differentiation: Find the polynomial from the given data using Newton's Forward/divided difference interpolation formula and hence find its derivative at the desired point.
- 35. Newton's forward interpolation formula to find the derivative at $x = x_0$ is $f'(x_0) = \frac{1}{h} \left[\Delta y_0 \frac{\Delta^2 y_0}{2} + \frac{\Delta^3 y_0}{3} \frac{\Delta^4 y_0}{4} + \cdots \right] \text{ and } f''(x_0) = \frac{1}{h^2} \left[\Delta^2 y_0 \Delta^3 y_0 + \frac{11}{12} \Delta^4 y_0 \cdots \right]$
- 36. Newton's backward interpolation formula to find the derivative at $x = x_0$ is $f'(x_0) = \frac{1}{h} \left[\nabla y_0 + \frac{\nabla^2 y_0}{2} + \frac{\nabla^3 y_0}{3} + \frac{\nabla^4 y_0}{4} + \cdots \right]$ and $f''(x_0) = \frac{1}{h^2} \left[\nabla^2 y_0 + \nabla^3 y_0 + \frac{11}{12} \nabla^4 y_0 + \cdots \right]$
- 37. Trapezoidal rule:

$$\int_{a}^{b} f(x)dx = \frac{h}{2} \left[(y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1}) \right]$$
where $h = \frac{b-a}{n}$, *n*- Number of intervals; $x_0 = a$; $x_n = b$; $x_i = x_{i-1} + h$; $y_i = f(x_i)$

- 38. Simpson's $\frac{1}{3}^{rd}$ rule: $\int_{a}^{b} f(x)dx = \frac{h}{3} \left[(y_0 + y_n) + 2(y_2 + y_4 + \dots) + 4(y_1 + y_3 + \dots) \right]$ where $h = \frac{b-a}{n}$, *n*- Number of intervals(even); $x_0 = a$; $x_n = b$; $x_i = x_{i-1} + h$; $y_i = f(x_i)$
- 39. Simpson's $\frac{3}{8}^{th}$ rule:
 - $\int_{a}^{b} f(x)dx = \frac{3h}{8} \left[(y_0 + y_n) + 3(y_1 + y_2 + y_4 + y_5 + \dots) + 2(y_3 + y_6 + \dots) \right]$ where $h = \frac{b-a}{n}$, *n*-Number of intervals (a multiple of 3); $x_0 = a$; $x_n = b$; $x_i = x_{i-1} + h$; $y_i = f(x_i)$
- 40. Gaussian two point quadrature formula:

$$\int_{-1} f(x)dx = f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}})$$

- 41. Gaussian three point quadrature formula: $\int_{-1}^{1} f(x)dx = \frac{5}{9} \left[f\left(-\sqrt{\frac{3}{5}}\right) + f\left(\sqrt{\frac{3}{5}}\right) \right] + \frac{8}{9}f(0)$
- 42. To evaluate $\int_{a}^{b} f(x)dx$ by Gaussian quadrature formula, put $t = \frac{(b-a)x+(b+a)}{2}$ then apply Gaussian quadrature formula.
- 43. Double integral using Trapezoidal rule:

 $\int_{c}^{a} \int_{a}^{b} f(x,y) dx dy = \frac{hk}{4} [(\text{Sum of 4 corner values}) + 2(\text{Sum of other boundary values}) + 4(\text{Sum of interior values})] \text{ where } h = \frac{b-a}{m}, k = \frac{d-c}{n}.$

44. **Double integral using Simpson's rule:**(3x3 grid) $\int_{c}^{d} \int_{a}^{b} f(x,y) dx dy = \frac{hk}{9} [(\text{Sum of 4 corner values}) + 4(\text{Sum of other boundary values}) + 16(\text{interior value})] \text{ where } h = \frac{b-a}{2}, k = \frac{d-c}{2}.$

4 Initial Value Problems:

Single Step Methods:

- 45. Taylor series method: (First order IVP) Solution of $y' = f(x, y), y(x_0) = y_0$ is given by $y_1 = y(x_0 + h) = y_0 + hy'_0 + \frac{h^2}{2!}y''_0 + \frac{h^3}{3!}y''_0 + \cdots$ where $y'_0 = \left[\frac{dy}{dx}\right]_{(x_0, y_0)}; y''_0 = \left[\frac{d^2y}{dx^2}\right]_{(x_0, y_0)}; y''_0 = \left[\frac{d^3y}{dx^3}\right]_{(x_0, y_0)}.$
- 46. Euler's method: Solution of $y' = f(x, y), y(x_0) = y_0$ is given by $y_1 = y(x_0 + h) = y_0 + hf(x_0, y_0).$
- 47. Modified Euler's method: Solution of y' = f(x, y) with $y(x_0) = y_0$ is given by $y_1 = y(x_0 + h) = y_0 + hf(x_0 + \frac{h}{2}, y_0 + \frac{h}{2}f(x_0, y_0)).$
- 48. Fourth order Runge-Kutta method (RK-IV Method) (First order IVP) Solution of y' = f(x, y) with $y(x_0) = y_0$ is given by $y_1 = y(x_0 + h) = y_0 + \Delta y$ where $\Delta y = \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k4)$; $k_1 = hf(x_0, y_0); k_2 = hf(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}); k_3 = hf(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}); k_4 = hf(x_0 + h, y_0 + k_3).$

- 49. Fourth order Runge-Kutta method (RK-IV Method) (First order simultaneous IVP) Solution of y' = f(x, y, z), z' = g(x, y, z) with $y(x_0) = y_0, z(x_0) = z_0$ is given by $y_1 = y(x_0 + h) = y_0 + \Delta y$ and $z_1 = z(x_0 + h) = z_0 + \Delta z$ where $\Delta y = \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4); k_1 = hf(x_0, y_0, z_0); k_2 = hf(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}, z_0 + \frac{l_1}{2});$ $k_3 = hf(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}, z_0 + \frac{l_2}{2}); k_4 = hf(x_0 + h, y_0 + k_3, z_0 + l_3)$ and $\Delta z = \frac{1}{6}(l_1 + 2l_2 + 2l_3 + l_4); l_1 = hg(x_0, y_0, z_0); l_2 = hg(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}, z_0 + \frac{l_1}{2});$ $l_3 = hg(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}, z_0 + \frac{l_2}{2}); l_4 = hg(x_0 + h, y_0 + k_3, z_0 + l_3).$
- 50. Fourth order Runge-Kutta method (RK-IV Method) (Second order IVP) To solve $y'' = \phi(x, y, y')$ with $y(x_0) = y_0, y'(x_0) = y'_0$, put y' = z then, we have $y' = z, z' = \phi(x, y, z)$ with $y(x_0) = y_0, z(x_0) = z_0$. Now apply RK-IV method for simultaneous equations. Multistep Method
- 51. Milne's Predictor-Corrector method: To solve y' = f(x, y) with $y(x_{n-3}) = y_{n-3}, y(x_{n-2}) = y_{n-2}, y(x_{n-1}) = y_{n-1}, y(x_n) = y_n$, the predictor formula is $y_{n+1,P} = y_{n-3} + \frac{4h}{3} [2y'_{n-2} y'_{n-1} + 2y'_n]$ and the corrector formula is $y_{n+1,C} = y_{n-1} + \frac{h}{3} [y'_{n-1} + 4y'_n + y'_{n+1}].$

5 Boundary Value Problems

- 52. Finite difference approximations for derivatives: $y'_i = \frac{y_{i+1} - y_{i-1}}{2h}$ and $y''_i = \frac{y_{i-1} - 2y_i + y_{i+1}}{h^2}$.
- 53. Classification of PDE: The second order linear PDE Au_{xx}+Bu_{xy}+Cu_{yy}+Du_x+Eu_y+Fu = G, where A, B, C, D, E, F, G are functions of x and y, is said to be (i) elliptic if B² 4AC < 0; (ii) parabolic if B² 4AC = 0; (iii) hyperbolic if B² 4AC > 0.

54. Finite difference approximations for partial derivatives:

We divide the xy-plane into a network of rectangles of sides h and k by drawing lines x = ihand y = jk for $i, j = 0, 1, 2, \cdots$. The points of intersection of these family of lines are called mesh points or grid points. Let $u(x, y) = u(ih, jk) = u_{i,j}$. We have $u_x = \frac{u_{i+1,j} - u_{i,j}}{h}$ (forward difference); $u_x = \frac{u_{i,j} - u_{i-1,j}}{h}$ (backward difference); $u_x = \frac{u_{i+1,j} - u_{i-1,j}}{2h}$ (central difference); $u_y = \frac{u_{i,j+1} - u_{i,j}}{k}$ (forward difference); $u_y = \frac{u_{i,j-1} - u_{i,j-1}}{k}$ (backward difference); $u_y = \frac{u_{i,j+1} - u_{i,j-1}}{2k}$ (central difference); Also $u_{xx} = \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h^2}$ and $u_{yy} = \frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{k^2}$.

Solution of one dimensional Heat flow Equation

55. Bender-Schmidt Method(Explicit Method): To solve $u_{xx} - au_t = 0$ with the boundary conditions $u(0,t) = T_0$, $u(l,t) = T_l$ and the initial condition u(x,0) = f(x), 0 < x < l. Explicit formula: $u_{i,j+1} = \lambda u_{i+1,j} + (1 - 2\lambda)u_{i,j} + \lambda u_{i-1,j}$ where $\lambda = \frac{k}{ah^2}$. Bender-Schmidt recurrence formula or simple scheme: (when $\lambda = \frac{1}{2}$ or $k = \frac{ah^2}{2}$). $u_{i,j+1} = \frac{1}{2}[u_{i-1,j} + u_{i+1,j}]$.

i.e., Value of u at $A = \frac{1}{2}$ [Value of u at B + Value u at C].

- 56. Crank-Nicholson's Simple Scheme(Implicit Method): To solve $u_{xx} au_t = 0$ with the boundary conditions $u(0,t) = T_0$, $u(l,t) = T_l$ and the initial condition u(x,0) = f(x), 0 < x < l, the Crank-Nicholson's simple scheme is
 - $u_{i,j+1} = \frac{1}{4} [u_{i-1,j+1} + u_{i+1,j+1} + u_{i-1,j} + u_{i+1,j}]$ when $k = ah^2$.

i.e., Value of u at A = Average value of u at B, C, D and E. Solution of one dimensional wave equation

57. To solve $a^2 uxx - u_{tt} = 0$ with the boundary conditions u(0,t) = u(l,t) = 0 and the initial conditions $u(x,0) = f(x), u_t(x,0) = 0$, the explicit formula is $u_{i,j+1} = u_{i-1,j} + u_{i+1,j} - u_{i,j-1}$ when $k = \frac{h}{a}$.

i.e., Value of u at A = Value of u at B + Value of u at C - Value of u at D. Solution of Laplace Equation

58. To solve the Laplace equation $\nabla^2 u = 0$, the Standard five point formula(SFPF) is $u_{i,j} = \frac{1}{4}[u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1}]$ when h = k = 1.

i.e., Value of u at A = Average value of u at B, C, D and E.

59. The diagonal five point formula (DFPF) to solve the Laplace equation is $u_{i,j} = \frac{1}{4}[u_{i-1,j-1} + u_{i-1,j+1} + u_{i+1,j-1} + u_{i+1,j+1}].$

i.e., Value of u at A = Average value of u at B, C, D and E.

Solution of Poisson Equation

60. To solve $\nabla^2 u = f(x, y)$, apply the following finite difference formula $u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} - 4u_{i,j} = h^2 f(ih, jh)$ at each grid point, we get a system of linear equations which can be solved easily.