Dr. K. Karuppasamy

www.drkk.in

Yahoo answers 23-01-2014

Problem: Find the area of the region consists of all the points inside a square of 2 cm by 2 cm such that they are closer to the center of the square than its sides.

Solution: Let the square be bounded by the lines $\mathrm{x}=1, \mathrm{x}=-1, \mathrm{y}=1$ and $\mathrm{y}=-1$.
Let O be the origin and $P(x, y)$ be any point on the first quadrant such that P is closer to the origin than the sides $\mathrm{x}=1$ and $\mathrm{y}=1$.

Thus we have, $x^{2}+y^{2}<(x-1)^{2}$ and $x^{2}+y^{2}<(y-1)^{2}$

$$
\Rightarrow y^{2}+2 x-1<0 \text { and } x^{2}+2 y-1<0
$$

Solving $y^{2}+2 x-1=0$ and $x^{2}+2 y-1=0$, we get the point of intersection in the first quadrant as

$$
(-1+\sqrt{2},-1+\sqrt{2})
$$

Put $x=r \cos \theta, y=r \sin \theta$ in $\mathrm{y}^{2}+2 \mathrm{x}-1=0$, we get $r=\frac{1}{2} \sec ^{2}\left(\frac{\theta}{2}\right)$. In the red shaded region, θ varies from 0 to $\frac{\pi}{4}$ and r varies from 0 to $\frac{1}{2} \sec ^{2}\left(\frac{\theta}{2}\right)$.

By symmetry, we have
Area of the required region $=8$ (Area of the red shaded region)
$=8 \int_{0}^{\frac{\pi}{4}} \int_{0}^{\frac{1}{2} \sec ^{2}\left(\frac{\theta}{2}\right)} r d r d \theta=8 \int_{0}^{\frac{\pi}{4}}\left[\frac{r^{2}}{2}\right]_{0}^{\frac{1}{2} \sec ^{2}\left(\frac{\theta}{2}\right)} d \boldsymbol{\theta}=\int_{0}^{\frac{\pi}{4}} \sec ^{4}\left(\frac{\boldsymbol{\theta}}{2}\right) d \boldsymbol{\theta}=\int_{0}^{\frac{\pi}{4}}\left(1+\tan ^{2}\left(\frac{\boldsymbol{\theta}}{2}\right)\right) \sec ^{2}\left(\frac{\boldsymbol{\theta}}{2}\right) d \boldsymbol{\theta}$
$=2 \int_{0}^{\sqrt{2}-1}\left(1+u^{2}\right) d u\left(\right.$ Put $\left.u=\tan \left(\frac{\theta}{2}\right)\right)$
$=2\left[u+\frac{u^{3}}{3}\right]_{0}^{\sqrt{2}-1}=\frac{2}{3}\left[3(\sqrt{2}-1)+(\sqrt{2}-1)^{3}\right]=\frac{2}{3}(\sqrt{2}-1)\left[3+(\sqrt{2}-1)^{2}\right]=\frac{4}{3}(4 \sqrt{2}-5)$.

