Dr. K. Karuppasamy

Yahoo answers 15-12-2013

Problem: Consider a Circle with center C and diameter $A B=2 r$. Two parallel chords $D E$ and $X Y$ which are equidistant from the center which makes an acute angle θ with the diameter $A B$ and intersect $A B$ at P and Q respectively. The distances $C P$ and CQ are ' a '. Find the area enclosed between the chords.

Solution:

Case (i): Let us find the area bounded by the chords DE and XY when they are perpendicular to the diameter $A B$.

In Fig-1, $A B=2 r, C P=C Q=a, D E$ and $X Y$ are perpendicular to $A B$.
Now $\quad \triangle C X Y=\triangle C D E=\frac{1}{2}(X Y)(C Q)=\frac{1}{2}(C Q)(2 X Q)=a \sqrt{r^{2}-a^{2}}$

Fig-1 $\angle X C D=\angle C X Q+\angle C Y Q=2 \angle C X Q=2 \sin ^{-1}\left(\frac{a}{r}\right)$ in radians.

Area of sector $\mathrm{XCD}=$ Area of sector $\mathrm{ECY}=\left(\frac{1}{2}\right) r^{2} \angle X C D=\left(\frac{1}{2}\right) r^{2} 2 \sin ^{-1}\left(\frac{a}{r}\right)=r^{2} \sin ^{-1}\left(\frac{a}{r}\right)$

Area bounded by the chords $D E$ and $X Y=2(\Delta C X Y+$ Area of sector $X C D)$
$=2\left(a \sqrt{r^{2}-a^{2}}+r^{2} \sin ^{-1}\left(\frac{a}{r}\right)\right)$.

Thus, the area bounded by any two parallel chords of a circle of radius ' r ' which are at a distance of ' a ' from the centre is $2\left(a \sqrt{r^{2}-a^{2}}+r^{2} \sin ^{-1}\left(\frac{a}{r}\right)\right)$. \qquad

Case (ii): Let us find the area bounded by the chords DE and XY when they cut the fixed diameter $A B$ at P and Q respectively at an angle θ with the diameter $A B$.

In Fig-2, $\mathrm{AB}=2 \mathrm{r}, \mathrm{CP}=\mathrm{CQ}=\mathrm{a}, \angle D P B=\angle X Q B=\theta$.

Draw MN passes through C and perpendicular to DE and XY.

In the right angled triangles CMP and CNQ, $C M=C N=a \sin \theta$

Now the chords DE and XY are at a distance $C M=C N=a \sin \theta$ from the center C. By case(i), the area bounded by the chords DE and XY is
$2\left(a \sin \theta \sqrt{r^{2}-(a \sin \theta)^{2}}+r^{2} \sin ^{-1}\left(\frac{a \sin \theta}{r}\right)\right)$
(Replace 'a' by 'a $\sin \theta^{\prime}$ ' in (1))

