Dr. K. Karuppasamy

www.drkk.in

Yahoo answers 10-12-2013

Problem: Suppose that 900 ft of fencing are used to enclose a corral in the shape of a rectangle with a semicircle whose diameter is a side of the rectangle as in the figure below. Find the dimensions of the corral with maximum area.(Find x and y).

Solution: Let xft be the diameter of the semi-circle (and hence one side of the rectangle) and y ft be the other side of the rectangle.

Area $=x y+1 / 2 \pi(x / 2)^{2}=x y+\pi x^{2} / 8$.
Perimeter $=x+2 y+\pi x / 2=900$
Let $f(x, y)=x y+\pi x^{2} / 8$ and $g(x, y)=x+2 y+\pi x / 2-900=0$

Let us apply, Lagrange's multiplier method.

The Lagrange's function $L(x, y, \lambda)=f(x, y)+\lambda g(x, y)$

$L=x y+\pi x^{2} / 8+\lambda(x+2 y+\pi x / 2-900)$
$\partial L / \partial x=0 \Rightarrow y+\pi x / 4+\lambda(1+\pi / 2)=0$
$\partial L / \partial y=0 \Rightarrow x+\lambda(2)=0$
$\partial L / \partial \lambda=0=>x+2 y+\pi x / 2-900=0$

From (2), we have $\lambda=-x / 2$.

Put $\lambda=-x / 2$ in (1), we get $y=x / 2$.

Put $y=x / 2$ in (3), we get
$x+2(x / 2)+\pi x / 2-900=0$
$\Rightarrow x(2+\pi / 2)=900$
$\Rightarrow x=1800 /(4+\pi)=252$ and hence $y=126$.

We get the maximum area when $x=252$ and $y=126$.

