Dr. K. Karuppasamy

www.drkk.in

Yahoo answers 07-12-2013

Problem: A company manufactures cylindrical paint cans with open tops with a volume of 35,000 cubic centimeters. What should be the dimensions of the cans in order to use the least amount of metal in their production?

Solution: Let r be the base radius and h be the height of the open cylinder of least surface area.

Given, Volume = $\pi r^2 h = 35000$.

Surface area of the open cylinder = $\pi r^2 + 2\pi rh$

Let $f(r,h) = \pi r^2 + 2\pi rh$ and $g(r,h) = \pi r^2 h - 35000 = 0$

Let us apply, Lagrange's multiplier method.

The Lagrange's function $L(r,h, \lambda) = f(r,h) + \lambda g(r,h) = \pi r^2 + 2\pi rh + \lambda(\pi r^2 h - 35000)$

 $\partial L/\partial r = 0 => 2\pi r + 2\pi h + \lambda (2\pi r h) = 0$ -----(1)

 $\partial L/\partial h = 0 \implies 2\pi r + \lambda (\pi r^2) = 0$ ------(2)

 $\partial L/\partial \lambda = 0 \Rightarrow \pi r^2 h - 35000 = 0$ ------(3)

From (1) and (2), we have, $(2\pi r + 2\pi h)/(2\pi r h) = (2\pi r)/(\pi r^2) = -\lambda$

 \Rightarrow (r+h)/rh = 2/r

Put h = r in (3), we get $r^3 = 35000/\pi$

h = r = cuberoot($35000/\pi$) = 22.33 cm