Dr. K. Karuppasamy

www.drkk.in

Yahoo answers 07-12-2013

Problem: A company manufactures cylindrical paint cans with open tops with a volume of 35,000 cubic centimeters. What should be the dimensions of the cans in order to use the least amount of metal in their production?

Solution: Let r be the base radius and h be the height of the open cylinder of least surface area.
Given, Volume $=\pi r^{2} h=35000$.
Surface area of the open cylinder $=\pi r^{2}+2 \pi r h$
Let $f(r, h)=\pi r^{2}+2 \pi r h$ and $g(r, h)=\pi r^{2} h-35000=0$
Let us apply, Lagrange's multiplier method.
The Lagrange's function $L(r, h, \lambda)=f(r, h)+\lambda g(r, h)=\pi r^{2}+2 \pi r h+\lambda\left(\pi r^{2} h-35000\right)$
$\partial L / \partial r=0=>2 \pi r+2 \pi h+\lambda(2 \pi r h)=0$ \qquad
$\partial L / \partial h=0 \Rightarrow 2 \pi r+\lambda\left(\pi r^{2}\right)=0$
$\partial \mathrm{L} / \partial \lambda=0=>\pi r^{2} \mathrm{~h}-35000=0$
From (1) and (2), we have, $(2 \pi r+2 \pi h) /(2 \pi r h)=(2 \pi r) /\left(\pi r^{2}\right)=-\lambda$
$\Rightarrow \quad(r+h) / r h=2 / r$
$\Rightarrow \quad \mathrm{h}=\mathrm{r}$
Put $h=r$ in (3), we get $r^{3}=35000 / \pi$
$h=r=\operatorname{cuberoot}(35000 / \pi)=22.33 \mathrm{~cm}$

