Dr. K. Karuppasamy

www.drkk.in

Yahoo answers 06-12-2013

Problem: A box with a square base and open top must have a volume of $32,000 \mathrm{~cm} 3$. Find the dimensions of the box that minimize the amount of material used.
Solution: Let xcm be the side of the base square and y be the height of the box.
Volume of the box $=x^{2} y=32000$
Surface area of the box $=x^{2}+4 x y=x^{2}+4 x\left(32000 / x^{2}\right)=x^{2}+k / x$ where $k=128000$.
Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{k} / \mathrm{x}$
$d f / d x=2 x-k / x^{2}$ and $d^{2} f / d x^{2}=2+2 k / x^{3}$
$f(x)$ is maximum or minimum when $d f / d x=0$

$$
\Rightarrow 2 x-k / x^{2}=0
$$

$\Rightarrow x^{3}=k / 2=64000$
$\Rightarrow x=40$
when $\mathrm{x}=40, \mathrm{~d}^{2} \mathrm{f} / \mathrm{dx} \mathrm{x}^{2}=2+2 \mathrm{k} / 40^{3}=6>0$
Thus $f(x)$ is minimum when $x=40$.
$x=40=>y=32000 / 40^{2}=20$.
For minimum material, the dimensions of the box : $(40,40,20)$.

