Dr. K. Karuppasamy

www.drkk.in

Yahoo answers 02-12-2013

Problem: What is the shape of the cheapest rectangular box of given volume V_{0} if the base material costs twice as much as the material used to make the top and the sides?

Solution: Let the required box size be (x, y, z) units and let $2 K$ be the material cost per square unit for the bottom side.

Volume of the box $=x y z=V_{0}$
Cost of the box $f(x, y, z)=2 K x y+K(x y+2 x z+2 y z)$
Let $g(x, y, z)=x y z-V_{0}=0$
Let us solve the problem by Lagrange's multiplier method.

$$
\begin{align*}
& L(x, y, z, \lambda)=f(x, y, z)+\lambda g(x, y, z)=2 K x y+K(x y+2 x z+2 y z)+\lambda\left(x y z-V_{0}\right) \\
& \partial L / \partial x=2 K y+K(y+2 z)+\lambda y z=0=>3 K y+2 K z+\lambda y z=0 \quad-------(1) \tag{1}\\
& \partial L / \partial y=2 K x+K(x+2 z)+\lambda x z=0 \Rightarrow>3 K x+2 K z+\lambda x z=0--------(2) \tag{2}\\
& \partial L / \partial z=K(2 x+2 y)+\lambda x y=0 \quad \Rightarrow 2 K x+2 K y+\lambda x y=0 \quad-------(3) \tag{3}\\
& \partial L / \partial \lambda=x y z-V_{0}=0 \tag{4}
\end{align*}
$$

From (1), (2) and (3), we get
$3 / z+2 / y=3 / z+2 / x=2 / y+2 / x=-\lambda / K$

$$
\Rightarrow z=(3 / 2) x=(3 / 2) y \text { and } x=y
$$

From (4), we have $z^{3}=9 V_{0} / 4=>z=\left(9 V_{0} / 4\right)^{\wedge}(1 / 3)$
Hence $x=y=\left(2 V_{0} / 3\right)^{\wedge}(1 / 3)$
Shape of the rectangular box is $\left(\left(2 \mathrm{~V}_{0} / 3\right)^{\wedge}(1 / 3),\left(2 \mathrm{~V}_{0} / 3\right)^{\wedge}(1 / 3),\left(9 \mathrm{~V}_{0} / 4\right)^{\wedge}(1 / 3)\right)$

