Dr. K. Karuppasamy

www.drkk.in

Yahoo answers 21-11-2013

Problem: In a right triangle, the bisector of the right angle divides the hypotenuse in the ratio of 3 to 5. Determine the measures of the acute angles of the triangles

Solution:

let BD be the angle bisector of $\angle \mathrm{B}$. Hence $\angle \mathrm{ABD}=\angle \mathrm{CBD}=45^{\circ}$
Let $C D=3 k$ and $A D=5 k$ where k is a constant.
Let $\angle \mathrm{BDC}=\alpha$ and hence $\angle \mathrm{ADB}=180^{\circ}-\alpha$.
We have $A B=8 k \cos A$ and $B C=8 k \sin A$.
By sine rule in $\triangle B C D$, we have

$C D / \sin 45^{\circ}=B C / \sin \alpha$
$\Rightarrow \sin \alpha=B C \sin 45^{\circ} / C D=8 k \sin A(1 / \sqrt{ } 2) /(3 k)=8 \sin A /(3 \sqrt{ } 2)$
By sine rule in $\triangle A B D$, we have
$A D / \sin 45^{\circ}=A B / \sin \left(180^{\circ}-\alpha\right)$
$\Rightarrow \sin \left(180^{\circ}-\alpha\right)=A B \sin 45^{\circ} / A D=8 k \cos A(1 / \sqrt{ } 2) /(5 k)=8 \cos A /(5 \sqrt{ } 2)$
$\Rightarrow \sin \alpha=8 \cos A /(5 \sqrt{ } 2)$
From (1) and (2), $8 \sin A /(3 \sqrt{ } 2)=8 \cos A /(5 \sqrt{ } 2)$
$\Rightarrow \tan A=3 / 5$
$\Rightarrow A=\arctan (3 / 5)$
Hence $B=90^{\circ}-\arctan (3 / 5)=\arctan (5 / 3)$.
Thus $A=\arctan (3 / 5)$ and $B=\arctan (5 / 3)$.

