Dr. K. Karuppasamy

www.drkk.in

Yahoo answers 21-11-2013

Problem: In a right triangle, the bisector of the right angle divides the hypotenuse in the ratio of 3 to 5. Determine the measures of the acute angles of the triangles

Solution:

let BD be the angle bisector of $\angle B$. Hence $\angle ABD = \angle CBD = 45^{\circ}$

Let CD = 3k and AD=5k where k is a constant.

Let \angle BDC = α and hence \angle ADB = 180° - α .

We have $AB = 8k \cos A$ and $BC = 8k \sin A$.

By sine rule in \triangle BCD, we have

CD/ sin 45° = BC/ sin α

⇒ $\sin \alpha = BC \sin 45^{\circ}/CD = 8k \sin A (1/\sqrt{2})/(3k) = 8 \sin A/(3\sqrt{2})$ ------(1)

By sine rule in $\triangle ABD$, we have

AD/ sin 45° = AB/ sin(180° - α)

 \Rightarrow sin(180° - α) = AB sin 45°/ AD = 8k cos A (1/√2)/(5k) = 8 cos A/(5√2)

 \Rightarrow sin α = 8 cos A/(5 $\sqrt{2}$) -----(2)

From (1) and (2), 8 sin A/($3\sqrt{2}$) =8 cos A/($5\sqrt{2}$)

⇒ tan A = 3/5

```
\Rightarrow A = arctan(3/5)
```

Hence $B = 90^\circ$ - arctan(3/5) = arctan(5/3).

Thus $A = \arctan(3/5)$ and $B = \arctan(5/3)$.

