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Problem:  Take a square piece of paper ABCD and fold the upper left corner A down along the lower 

edge CD. Call the point where the left edge of the paper is bent point X, and the point along the lower 
edge where A touches point Y. The triangle XDY is a right triangle in the lower left corner. Turn this 
situation into an algebraic model to optimize the selection of X so that the area of triangle XDY is 
maximal. 

Solution:  

Let  the side of the square ABCD be  ‘a’ units.      

Let DX = x  and hence XY = a-x. 

Since XDY is a right triangle, DY
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f(x) is maximum or minimum when df/dx = 0 
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  x = 0 is not possible. 

When x = a/3,  d
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Hence f is maximum when x = a/3. 

Maximum area  of the triangle XDY = (1/2).(a/3) √(a
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