Dr. K. Karuppasamy

www.drkk.in

Yahoo answers 18-10-2013

Problem: Suppose that three "fair" dice are tossed. Determine the probability that the sum of the dice is at most 16.

Solution: Let $S(n, k)$ be the number of cases of the sum being k when n dice are thrown.
$S(n, k)=$ coefficient of x^{k} in $\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right)^{n}$
$=$ coefficient of x^{k} in $x^{n} *\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}\right)^{n}$
$=$ coefficient of x^{k} in $x^{n} *\left[\left(1-x^{6}\right) /(1-x)\right]^{n}$
$=$ coefficient of x^{k} in $x^{n} *\left(1-x^{6}\right)^{n} *(1-x)^{-n}$
Now $S(3,17)=$ coefficient of x^{17} in $x^{3 *}\left(1-x^{6}\right)^{3 *}(1-x)^{-3}$
$=$ coefficient of x^{17} in $x^{3} *\left(1-3 x^{6}+3 x^{12}-x^{18}\right)^{*}(1-x)^{-3}$
$=$ coefficient of x^{17} in $\left(x^{3}-3 x^{9}+3 x^{15}-x^{21}\right)^{*}(1-x)^{-3}$
$=$ coefficient of x^{17} in $\left(x^{3}-3 x^{9}+3 x^{15}-x^{21}\right) *\left(1+(2 * 3) /(1 * 2) x+(3 * 4) /(1 * 2) x^{2}+(4 * 5) /(1 * 2) x^{3}+\ldots\right)$
$=1^{*}\left(15^{*} 16\right) /(1 * 2)+(-3) *(9 * 10) /\left(1^{*} 2\right)+3 *(3 * 4) /\left(1^{*} 2\right)=3$
Obviously $S(3,18)=1$ (or)
$S(3,18)=$ coefficient of x^{18} in $\left(x^{3}-3 x^{9}+3 x^{15}-x^{21}\right)^{*}\left(1+(2 * 3) /\left(1^{*} 2\right) x+(3 * 4) /\left(1^{*} 2\right) x^{2}+(4 * 5) /(1 * 2) x^{3}+\ldots\right)$
$=1 *(16 * 17) /(1 * 2)+(-3) *(10 * 11) /(1 * 2)+3 *(4 * 5) /(1 * 2)=1$

Exhaustive number of cases $=6 * 6 * 6=216$

Favorable number of cases for getting the sum as at most $16=216-\mathrm{S}(3,17)-\mathrm{S}(3,18)=212$

Required Probability $=212 / 216=53 / 54$

