Dr. K. Karuppasamy

(www.drkk.in)

Yahoo Answer dated 26-09-2013

Question: $A B C$ is a triangular framework with $A B$ horizontal and length of $15 \mathrm{~m}, A C$ of length 10 m and $B C$ of length 13 m . A vertical strut is to be fixed with one end at a point D on $A B$ such that $B D: D A=1: 2$, and the other end at E on $C B$. Find the length of this strut, to the nearest centimetre.

Solution: Since $A B=15 \mathrm{~m}$ and $B D: D A=1: 2$, we have $B M=5 \mathrm{~m}$ and $A M=10 \mathrm{~m}$.
In $\triangle A B C, \cos B=\frac{c^{2}+a^{2}-b^{2}}{2 c a}=\frac{15^{2}+13^{2}-10^{2}}{2 * 15 * 13}=\frac{294}{390}$.
Angle $B=\arccos \left(\frac{294}{390}\right)=41^{\circ} 5^{\prime}$
Now in the right angled $\triangle B M E, \tan B=\frac{D E}{B M}$
$\Longrightarrow D E=B M * \tan B=5 * \tan \left(41^{\circ} 5^{\prime}\right)=4.36 \mathrm{~m}=4 \mathrm{~m} 36 \mathrm{~cm}$.

