Dr. K. Karuppasamy

www.drkk.in

Yahoo answers 25-09-2013

Problem: A wire of length b is cut in two parts which are bent in the form of square and circle respectively. Find the least value of the sum of areas so formed.

Solution: Let x and y be the two parts, where x is converted into a square and y is converted into a circle. Let a be the side of square and r be the radius of circle so formed. Thus we have,

$$
4 a=x, 2 \pi r=y \text { and } x+y=b .
$$

$\Rightarrow a=x / 4$ and $r=y /(2 \pi)$ and $x+y=b$
Let $f(x, y)=$ sum of the areas of square and circle $=(x / 4)^{2}+\pi(y / 2 \pi)^{2}$ and let $g(x, y)=x+y-b=0$.
The auxiliary function be $F(x, y)=f(x, y)+\lambda g(x, y)=(x / 4)^{2}+\pi(y / 2 \pi)^{2}+\lambda(x+y-b)$
$\partial F / \partial x=0 \quad \Rightarrow x / 8+\lambda=0$
$\partial F / \partial y=0 \quad \Rightarrow y /(2 \pi)+\lambda=0$
$\partial F / \partial \lambda=0 \quad \Rightarrow x+y-b=0$
From (1) and (2), $\quad-\lambda=x / 8=y /(2 \pi)$
$\Rightarrow \quad x / 8=y /(2 \pi)=(x+y) /(8+2 \pi)=b /(8+2 \pi) \quad(u s i n g(3))$
$\Rightarrow x=(8 b) /(8+2 \pi)=(4 b) /(4+\pi)$ and $y=(2 \pi b) /(8+2 \pi)=(\pi b) /(4+\pi)$
Least value of sum of areas $=(x / 4)^{2}+\pi(y / 2 \pi)^{2}=[b /(4+\pi)]^{2}+\pi[b /(8+2 \pi)]^{2}$

