Dr. K. Karuppasamy

www.drkk.in

Yahoo answers 25-09-2013

Problem: A wire of length b is cut in two parts which are bent in the form of square and circle respectively. Find the least value of the sum of areas so formed.

Solution: Let x and y be the two parts, where x is converted into a square and y is converted into a circle. Let a be the side of square and r be the radius of circle so formed. Thus we have,

$$4a = x$$
, $2\pi r = y$ and $x+y = b$.

 \Rightarrow a = x/4 and r = y / (2 π) and x + y = b

Let $f(x,y) = \text{sum of the areas of square and circle} = (x/4)^2 + \pi (y/2 \pi)^2$ and let g(x,y)=x+y-b=0. The auxiliary function be $F(x,y) = f(x,y)+\lambda g(x,y) = (x/4)^2 + \pi (y/2 \pi)^2 + \lambda (x+y-b)$

 $\partial F/\partial x = 0$ => x/8 + λ = 0 ------(1) $\partial F/\partial y = 0$ => y/(2 π) + λ = 0 ------(2) $\partial F/\partial \lambda = 0$ => x+y-b=0 ------(3) From (1) and (2), $-\lambda = x/8 = y/(2 \pi)$

 \Rightarrow x/8 = y/(2 π) = (x+y)/(8+2 π) = b /(8+2 π) (using (3))

 \Rightarrow x = (8 b) /(8+2 π) = (4b)/(4+ π) and y= (2 π b) /(8+2 π) = (π b) /(4+ π)

Least value of sum of areas = $(x/4)^2 + \pi (y/2 \pi)^2 = [b/(4+\pi)]^2 + \pi [b/(8+2\pi)]^2$