Dr. K. Karuppasamy

www.drkk.in

Yahoo answers 15-09-2013

Problem: Let $L=\{(x, y) \mid-2 x+y=3\}$ contained in R^{2}. Given any point (c, d) in R^{2}, find a point on L which is closest to (c, d).

Solution: Let the required point be (x, y), Therefore, $y=2 x+3$.
Now the distance between (x, y) and (c, d) is $D=\sqrt{(x-c)^{2}+(y-d)^{2}}$.
Let $f(x)=D^{2}=(x-c)^{2}+(2 x+3-d)^{2}, f^{\prime}(x)=2(x-c)+4(2 x+3-d)$ and $f^{\prime \prime}(x)=10$.
$f(x)$ is minimum when $f^{\prime}(x)=2(x-c)+4(2 x+3-d)=0 \Rightarrow x=\frac{c+2 d-6}{5}$ and hence
$y=2\left(\frac{c+2 d-6}{5}\right)+3=\frac{2 c+4 d+3}{5}$. Also, at this point $f^{\prime \prime}(x)=10>0$.
Hence the required point on L is $\left(\frac{c+2 d-6}{5}, \frac{2 c+4 d+3}{5}\right)$.

