Yahoo answers 15-09-2013

Problem: Let $L = \{(x, y) | -2x + y = 3\}$ contained in R^2 . Given any point (c,d) in R^2 , find a point on L which is closest to (c,d).

Solution: Let the required point be (x,y), Therefore, y=2x+3.

Now the distance between (x,y) and (c,d) is $D = \sqrt{(x-c)^2 + (y-d)^2}$.

Let
$$f(x) = D^2 = (x-c)^2 + (2x+3-d)^2$$
, $f'(x) = 2(x-c) + 4(2x+3-d)$ and $f''(x) = 10$.

$$f(x)$$
 is minimum when $f'(x) = 2(x-c) + 4(2x+3-d) = 0 \Rightarrow x = \frac{c+2d-6}{5}$ and hence

$$y = 2\left(\frac{c+2d-6}{5}\right) + 3 = \frac{2c+4d+3}{5}$$
. Also, at this point $f''(x) = 10 > 0$.

Hence the required point on L is $\left(\frac{c+2d-6}{5}, \frac{2c+4d+3}{5}\right)$.