The 35th International Mathematical Olympiad (July 13-14, 1994, Hong Kong)

1. Let m and n be positive integers. Let $a_{1}, a_{2}, \ldots, a_{m}$ be distinct elements of $\{1,2, \ldots, n\}$ such that whenever $a_{i}+a_{j} \leq n$ for some $i, j, 1 \leq i \leq j \leq m$, there exists $k, 1 \leq k \leq m$, with $a_{i}+a_{j}=a_{k}$. Prove that

$$
\frac{a_{1}+a_{2}+\cdots+a_{m}}{m} \geq \frac{n+1}{2} .
$$

2. $A B C$ is an isosceles triangle with $A B=A C$. Suppose that
3. M is the midpoint of $B C$ and O is the point on the line $A M$ such that $O B$ is perpendicular to $A B$;
4. Q is an arbitrary point on the segment $B C$ different from B and C;
5. E lies on the line $A B$ and F lies on the line $A C$ such that E, Q, F are distinct and collinear.
Prove that $O Q$ is perpendicular to $E F$ if and only if $Q E=Q F$.
6. For any positive integer k, let $f(k)$ be the number of elements in the set $\{k+1, k+2, \ldots, 2 k\}$ whose base 2 representation has precisely three 1 s .

- (a) Prove that, for each positive integer m, there exists at least one positive integer k such that $f(k)=m$.
- (b) Determine all positive integers m for which there exists exactly one k with $f(k)=m$.

4. Determine all ordered pairs (m, n) of positive integers such that

$$
\frac{n^{3}+1}{m n-1}
$$

is an integer.
5. Let S be the set of real numbers strictly greater than -1 . Find all functions $f: S \rightarrow S$ satisfying the two conditions:

1. $f(x+f(y)+x f(y))=y+f(x)+y f(x)$ for all x and y in S;
2. $\frac{f(x)}{x}$ is strictly increasing on each of the intervals $-1<x<0$ and $0<x$.
3. Show that there exists a set A of positive integers with the following property: For any infinite set S of primes there exist two positive integers $m \in A$ and $n \notin A$ each of which is a product of k distinct elements of S for some $k \geq 2$.
