Twenty-fourth International Olympiad, 1983

1983/1. Find all functions f defined on the set of positive real numbers which take positive real values and satisfy the conditions:

(i) f(xf(y)) = yf(x) for all positive x, y;

(ii) $f(x) \to 0$ as $x \to \infty$.

1983/2. Let A be one of the two distinct points of intersection of two unequal coplanar circles C_1 and C_2 with centers O_1 and O_2 , respectively. One of the common tangents to the circles touches C_1 at P_1 and C_2 at P_2 , while the other touches C_1 at Q_1 and C_2 at Q_2 . Let M_1 be the midpoint of P_1Q_1 , and M_2 be the midpoint of P_2Q_2 . Prove that $\angle O_1AO_2 = \angle M_1AM_2$.

1983/3. Let a, b and c be positive integers, no two of which have a common divisor greater than 1. Show that 2abc - ab - bc - ca is the largest integer which cannot be expressed in the form xbc + yca + zab, where x, y and z are non-negative integers.

1983/4. Let ABC be an equilateral triangle and \mathcal{E} the set of all points contained in the three segments AB, BC and CA (including A, B and C). Determine whether, for every partition of \mathcal{E} into two disjoint subsets, at least one of the two subsets contains the vertices of a right-angled triangle. Justify your answer.

1983/5. Is it possible to choose 1983 distinct positive integers, all less than or equal to 10^5 , no three of which are consecutive terms of an arithmetic progression? Justify your answer.

1983/6. Let a, b and c be the lengths of the sides of a triangle. Prove that

$$a^{2}b(a-b) + b^{2}c(b-c) + c^{2}a(c-a) \ge 0.$$

Determine when equality occurs.