Twenty-fourth International Olympiad, 1983

1983/1. Find all functions f defined on the set of positive real numbers which take positive real values and satisfy the conditions:
(i) $f(x f(y))=y f(x)$ for all positive x, y;
(ii) $f(x) \rightarrow 0$ as $x \rightarrow \infty$.

1983/2. Let A be one of the two distinct points of intersection of two unequal coplanar circles C_{1} and C_{2} with centers O_{1} and O_{2}, respectively. One of the common tangents to the circles touches C_{1} at P_{1} and C_{2} at P_{2}, while the other touches C_{1} at Q_{1} and C_{2} at Q_{2}. Let M_{1} be the midpoint of $P_{1} Q_{1}$, and M_{2} be the midpoint of $P_{2} Q_{2}$. Prove that $\angle O_{1} A O_{2}=\angle M_{1} A M_{2}$.
1983/3. Let a, b and c be positive integers, no two of which have a common divisor greater than 1 . Show that $2 a b c-a b-b c-c a$ is the largest integer which cannot be expressed in the form $x b c+y c a+z a b$, where x, y and z are non-negative integers.
1983/4. Let $A B C$ be an equilateral triangle and \mathcal{E} the set of all points contained in the three segments $A B, B C$ and $C A$ (including A, B and C). Determine whether, for every partition of \mathcal{E} into two disjoint subsets, at least one of the two subsets contains the vertices of a right-angled triangle. Justify your answer.
1983/5. Is it possible to choose 1983 distinct positive integers, all less than or equal to 10^{5}, no three of which are consecutive terms of an arithmetic progression? Justify your answer.
$1983 / 6$. Let a, b and c be the lengths of the sides of a triangle. Prove that

$$
a^{2} b(a-b)+b^{2} c(b-c)+c^{2} a(c-a) \geq 0
$$

Determine when equality occurs.

