Seventeenth International Olympiad, 1975

1975/1.
Let $x_{i}, y_{i}(i=1,2, \ldots, n)$ be real numbers such that

$$
x_{1} \geq x_{2} \geq \cdots \geq x_{n} \text { and } y_{1} \geq y_{2} \geq \cdots \geq y_{n} .
$$

Prove that, if $z_{1}, z_{2}, \cdots, z_{n}$ is any permutation of $y_{1}, y_{2}, \cdots, y_{n}$, then

$$
\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2} \leq \sum_{i=1}^{n}\left(x_{i}-z_{i}\right)^{2} .
$$

1975/2.

Let $a_{1}, a_{2}, a_{3}, \cdots$ be an infinite increasing sequence of positive integers. Prove that for every $p \geq 1$ there are infinitely many a_{m} which can be written in the form

$$
a_{m}=x a_{p}+y a_{q}
$$

with x, y positive integers and $q>p$.
1975/3.
On the sides of an arbitrary triangle $A B C$, triangles $A B R, B C P, C A Q$ are constructed externally with $\angle C B P=\angle C A Q=45^{\circ}, \angle B C P=\angle A C Q=$ $30^{\circ}, \angle A B R=\angle B A R=15^{\circ}$. Prove that $\angle Q R P=90^{\circ}$ and $Q R=R P$.

1975/4.

When 4444^{4444} is written in decimal notation, the sum of its digits is A. Let B be the sum of the digits of A. Find the sum of the digits of B. (A and B are written in decimal notation.)

1975/5.
Determine, with proof, whether or not one can find 1975 points on the circumference of a circle with unit radius such that the distance between any two of them is a rational number.

1975/6.

Find all polynomials P, in two variables, with the following properties:
(i) for a positive integer n and all real t, x, y

$$
P(t x, t y)=t^{n} P(x, y)
$$

(that is, P is homogeneous of degree n),
(ii) for all real a, b, c,

$$
P(b+c, a)+P(c+a, b)+P(a+b, c)=0
$$

(iii) $P(1,0)=1$.

