Fourteenth International Olympiad, 1972

1972/1.

Prove that from a set of ten distinct two-digit numbers (in the decimal system), it is possible to select two disjoint subsets whose members have the same sum.
1972/2.
Prove that if $n \geq 4$, every quadrilateral that can be inscribed in a circle can be dissected into n quadrilaterals each of which is inscribable in a circle.

1972/3.

Let m and n be arbitrary non-negative integers. Prove that

$$
\frac{(2 m)!(2 n)!}{m \prime n!(m+n)!}
$$

is an integer. $(0!=1$.
1972/4.
Find all solutions $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ of the system of inequalities

$$
\begin{aligned}
& \left(x_{1}^{2}-x_{3} x_{5}\right)\left(x_{2}^{2}-x_{3} x_{5}\right) \leq 0 \\
& \left(x_{2}^{2}-x_{4} x_{1}\right)\left(x_{3}^{2}-x_{4} x_{1}\right) \leq 0 \\
& \left(x_{3}^{2}-x_{5} x_{2}\right)\left(x_{4}^{2}-x_{5} x_{2}\right) \leq 0 \\
& \left(x_{4}^{2}-x_{1} x_{3}\right)\left(x_{5}^{2}-x_{1} x_{3}\right) \leq 0 \\
& \left(x_{5}^{2}-x_{2} x_{4}\right)\left(x_{1}^{2}-x_{2} x_{4}\right) \leq 0
\end{aligned}
$$

where $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ are positive real numbers.

1972/5.

Let f and g be real-valued functions defined for all real values of x and y, and satisfying the equation

$$
f(x+y)+f(x-y)=2 f(x) g(y)
$$

for all x, y. Prove that if $f(x)$ is not identically zero, and if $|f(x)| \leq 1$ for all x, then $|g(y)| \leq 1$ for all y.
1972/6.
Given four distinct parallel planes, prove that there exists a regular tetrahedron with a vertex on each plane.

